高考放縮法技巧全總結

2021-09-23 00:05:04 字數 4539 閱讀 3738

高考數學備考之一放縮技巧

證明數列型不等式,因其思維跨度大、構造性強,需要有較高的放縮技巧而充滿思考性和挑戰性,能全面而綜合地考查學生的潛能與後繼學習能力,因而成為高考壓軸題及各級各類競賽試題命題的極好素材。這類問題的求解策略往往是:通過多角度觀察所給數列通項的結構,深入剖析其特徵,抓住其規律進行恰當地放縮;其放縮技巧主要有以下幾種:

一、裂項放縮

例1.(1)求的值; (2)求證:.

解析:(1)因為,所以

(2)因為,所以

奇巧積累:(1) (2)

(3(4(56(7) (8)

(9(10) (11)

(11)

(12(13(14) (15)

(15例2.(1)求證:

(2)求證: (3)求證:

(4) 求證:

解析:(1)因為,所以

(2)(3)先運用分式放縮法證明出,再結合進行裂項,最後就可以得到答案

(4)首先,所以容易經過裂項得到

再證而由均值不等式知道這是顯然成立的,

所以例3.求證:

解析: 一方面: 因為,所以

另一方面:

當時, ,當時, ,

當時, ,

所以綜上有

例4.(2023年全國一捲)設函式.數列滿足..

設,整數.證明:.

解析: 由數學歸納法可以證明是遞增數列,

故若存在正整數, 使, 則,

若,則由知, ,

因為,於是

例5.已知,求證:.

解析:首先可以證明:

所以要證

只要證:

故只要證,

即等價於,

即等價於而正是成立的,所以原命題成立.

例6.已知, ,求證:.

解析:所以 從而

例7.已知, ,求證:

證明:,

因為 ,所以

所以二、函式放縮

例8.求證:.

解析:先建構函式有,從而

cause

所以 例9.求證:(1)

解析:建構函式,得到,再進行裂項,求和後可以得到答案

函式構造形式:,

例10.求證:

解析:提示:

函式構造形式:

當然本題的證明還可以運用積分放縮

如圖,取函式,

首先:,從而,

取有, ,

所以有, ,…, , ,相加後可以得到:

另一方面,從而有

取有, ,

所以有,所以綜上有

例11.求證:和.解析:建構函式後即可證明

例12.求證: 解析:,疊加之後就可以得到答案

函式構造形式: (加強命題)

例13.證明:

解析:建構函式,求導,可以得到:

令有,令有,

所以,所以,令有,

所以,所以

例14. 已知證明.

解析:,

然後兩邊取自然對數,可以得到

然後運用和裂項可以得到答案)

放縮思路:

。於是,

即注:題目所給條件()為一有用結論,可以起到提醒思路與探索放縮方向的作用;當然,本題還可用結論來放縮:,即

例16.(2023年福州市質檢)已知函式若

解析:設函式

∴函式)上單調遞增,在上單調遞減.∴的最小值為,即總有

而即令則例15.(2023年廈門市質檢) 已知函式是在上處處可導的函式,若在上恆成立.

()求證:函式上是增函式; ()當;

已知不等式時恆成立,

求證:解析:(),所以函式上是增函式

()因為上是增函式,所以

兩式相加後可以得到

(3)……相加後可以得到:

所以令,有

所以(方法二)

所以又,所以

三、分式放縮

姐妹不等式:和

記憶口訣」小者小,大者大」

解釋:看b,若b小,則不等號是小於號,反之.

例19. 姐妹不等式:和

也可以表示成為

和解析: 利用假分數的乙個性質可得 即

例20.證明:

解析: 運用兩次次分式放縮:

(加1)

加2) 相乘,可以得到:

所以有四、分類放縮

例21.求證:

解析:例22.(2023年全國高中數學聯賽加試改編) 在平面直角座標系中,軸正半軸上的點列與曲線(≥0)上的點列滿足,直線在x軸上的截距為.點的橫座標為,.

(1)證明》4,; (2)證明有,使得對都有<.

解析:(1) 依題設有:,由得:

又直線在軸上的截距為滿足

顯然,對於,有

2)證明:設,則

設,則當時,

。所以,取,對都有:

故有《成立。

例23.(2023年泉州市高三質檢) 已知函式,若的定義域為[-1,0],值域也為[-1,0].若數列滿足,記數列的前項和為,問是否存在正常數a,使得對於任意正整數都有?

並證明你的結論。

解析:首先求出,∵

∴,∵, ,…

,故當時, ,

因此,對任何常數a,設是不小於a的最小正整數,

則當時,必有.

故不存在常數a使對所有的正整數恆成立.

例24.(2023年中學教學參考)設不等式組表示的平面區域為,

設內整數座標點的個數為.設, 當時,求證:.

解析:容易得到,所以,要證只要證,因為,所以原命題得證

五、迭代放縮

例25. 已知,求證:當時,

解析:通過迭代的方法得到,然後相加就可以得到結論

例26. 設,求證:對任意的正整數k,若k≥n恒有:|sn+k-sn|<

解析:又所以六、借助數列遞推關係

例27.求證:

解析: 設則

,從而,相加後就可以得到

所以例28. 求證:

解析: 設則

,從而,相加後就可以得到

例29. 若,求證:

解析:所以就有

七、分類討論

例30.已知數列的前項和滿足證明:對任意的整數,有

解析:容易得到,

由於通項中含有,很難直接放縮,考慮分項討論:

當且為奇數時

(減項放縮),於是

當且為偶數時

當且為奇數時(添項放縮)由知由得證。

八、線性規劃型放縮

例31. 設函式.若對一切,,求的最大值。

解析:由知即

由此再由的單調性可以知道的最小值為,最大值為

因此對一切,的充要條件是, 即,滿足約束條件,

由線性規劃得,的最大值為5.

九、均值不等式放縮

例32.設求證

解析: 此數列的通項為,,即

注:應注意把握放縮的「度」:上述不等式右邊放縮用的是均值不等式,若放成則得,就放過「度」了!

根據所證不等式的結構特徵來選取所需要的重要不等式,這裡

其中,等的各式及其變式公式均可供選用。

例33.已知函式,若,且在[0,1]上的最小值為,求證:

解析:例34.已知為正數,且,試證:對每乙個,.

解析: 由得,又,故,而,

令,則=,因為,倒序相加得=,

而,則=,所以,即對每乙個,.

例35.求證

解析: 不等式左=,

原結論成立.

例36.已知,求證:

解析:經過倒序相乘,就可以得到

例37.已知,求證:

解析:其中:,因為

所以從而,所以.

例38.若,求證:.

解析:因為當時, ,所以,所以,當且僅當時取到等號.

所以所以所以

例39.已知,求證:.

解析:.

例40.已知函式f(x)=x2-(-1)k·2lnx(k∈n*).k是奇數, n∈n*時,

求證: [f』(x)]n-2n-1·f』(xn)≥2n(2n-2).

解析: 由已知得,

(1)當n=1時,左式=右式=0.∴不等式成立.

(2), 左式=

令 由倒序相加法得:

所以所以綜上,當k是奇數,時,命題成立

例41. (2023年東北三校)已知函式

1)求函式的最小值,並求最小值小於0時的取值範圍;

2)令求證:

★例42. (2023年江西高考試題)已知函式,.對任意正數,證明:.

解析:對任意給定的, ,由,

若令,則① ,而②

(一)、先證;因為,,,

又由 ,得.所以.

(二)、再證;由①、②式中關於的對稱性,不妨設.則

(ⅰ)、當,則,所以,因為,

,此時.

(ⅱ)、當③,由①得 ,,,

因為所以④

同理得⑤ ,於是⑥

今證明⑦, 因為 ,

只要證 ,即,也即,據③,此為顯然.

因此⑦得證.故由⑥得.

綜上所述,對任何正數,皆有.

例43.求證:

解析:一方面:

(法二)

另一方面:

十、二項放縮

「放縮法」技巧

例談 放縮法 證明不等式的基本策略 1 新增或捨棄一些正項 或負項 例1 已知求證 證明 若多項式中加上一些正的值,多項式的值變大,多項式中加上一些負的值,多項式的值變小。由於證明不等式的需要,有時需要捨去或新增一些項,使不等式一邊放大或縮小,利用不等式的傳遞性,達到證明的目的。本題在放縮時就捨去了...

「放縮法」技巧

例談 放縮法 證明不等式的基本策略 近年來在高考解答題中,常滲透不等式證明的內容,而不等式的證明是高中數學中的乙個難點,它可以考察學生邏輯思維能力以及分析問題和解決問題的能力。特別值得一提的是,高考中可以用 放縮法 證明不等式的頻率很高,它是思考不等關係的樸素思想和基本出發點,有極大的遷移性,對它的...

數列放縮法技巧

一 裂項放縮 例1.1 求的值 2 求證 解析 1 因為,所以 2 因為,所以 2 證 2 求證 3 求證 4 求證 解析 1 因為,所以 2 3 先運用分式放縮法證明出,再結合進行 裂項,最後就可以得到答案 4 首先,所以容易經過裂項得到 再證而由均值不等式知道這是顯然成立的,所以 例3.求證 解...