風電機組綜合防雷

2022-10-06 06:27:05 字數 4583 閱讀 7178

風電機組都設定在風力強大、雷電多發的海岸、丘陵、山脊等地區的制高點,並遠離其它高大物體,因此更易遭受雷擊。

風電機組由於其自身的特殊性,也出現了其它建築物不曾有的防雷難點:

——風電機組是高度超過120m 的高大構築物;

——風電機組的許多暴露部件,如葉片和機艙蓋往往由不能承受直擊雷或傳導直擊雷電流的複合材料製成;

——葉片和機艙是旋轉的(不利導流);

——風電場中的風電機組往往位於接地條件不好的區域。

綜合防雷措施

從分析風電機組遭受雷擊事故呈現出來的現象來看,原因多種多樣:

1 我國地域遼闊,各風電場所處的地理位置不同,風電機組所處的雷電環境也千差萬別。即使是在同乙個風電場,安裝在不同位置的風電機組遭受雷擊的概率也不相同。

2 在實際的設計施工中,往往是同乙個防雷設計方案應用到不同雷電環境下的風電機組上。

3 由於沒有根據風電機組的實際情況選擇合適的spd,沒有達到預期的電湧防護效果。

因此風電機組的雷電防護必須結合風電機組的特點、

風電場的實際情況進行全面的考慮,按照防直擊雷、防雷電電磁脈衝的方法設計乙個綜合的防雷系統工程,風電機組綜合防雷系統包括如圖1 所示的六個方面。

一、直擊雷防護

風電機組易接閃的部位主要是葉片、機艙和其上的測風、測溫等裝置以及塔身。本章重點要討論的是,如何從整體考慮的區域防雷來防止或減少風電機組遭受直擊雷。

區域防雷主要思想是:依據雷擊選擇性、雷擊電氣-幾何模型的理論以及「雙極接閃針」能減少被保護物雷擊機率的特性,將整個風電場看做乙個整體,在風電場適當位置設定數個獨立接閃針塔,機艙尾部上方安裝乙隻「雙極接閃針」。將風電場區域內強度大的雷電吸引到接閃針塔上,減少強度大的雷電擊中風電機組的概率。

根據雷擊選擇性,在一定區域內,在地面電場強度越大的地方,雷擊越易發生。通過架設的獨立接閃針塔與機艙尾部上方安裝的「雙極接閃針」相配合,在雷雲接近機組時,獨立接閃針塔頂處的電場強度遠遠高於風電機組上的電場強度,這就達到讓雷擊發生在接閃針塔上的目的。

當然,這一方法中獨立針塔在風電場中架設的位置選擇非常關鍵,需要對風電場的自然條件及雷電活動規律進行調查,根據風電場的氣象、地理、風電機組布局和防護成本等實際情況來綜合考慮。圖2 為山區風電場接閃針塔布置示意圖。

二、等電位連線

等電位連線的目的是為了防止和減小裝置、系統之間危險的電位差,確保裝置和操作人員的安全。

(一)機艙等電位連線

目前多數風電機組機艙處採取的等電位連線措施,是在機艙內為形成乙個可靠的等電位連線系統,設定總等電位接地端子板,其與機艙金屬底座連線;機艙內各種電氣裝置的金屬外殼、機櫃、機架、金屬管、槽、遮蔽線纜金屬遮蔽層、spd 接地端、機艙接閃器引下線與機艙內總等電位接地端子板連線;葉片雷電引下線通過滑環與機艙底座連線。

上述等電位連線措施雖然能達到防止和減小裝置、系統之間危險電位差的目的,但是這種連線方式,卻存在將部分雷電流引入機組電氣系統的危險,從而導致接觸器和可控矽直接損壞,或導致接觸器及可控矽頻繁動作引起接觸器觸頭拉弧燒蝕、可控矽損壞、補償電容器擊穿,甚至在母排間出現拉弧現象。

機艙等電位連線系統建議採用如圖3 的結構。

在風電機組機艙內設定一機艙電氣裝置總等電位接地端子板,其與機艙金屬底座絕緣,由塔底接地裝置引一根絕緣銅芯導線(pe 線)連線到機艙總等電位接地端子板上;spd 接地端、遮蔽線纜金屬遮蔽層連線到接地端子板上。各種電氣裝置的金屬外殼、機櫃、機架、機艙避雷針引下線與機艙金屬底座連線;葉片雷電引下線通過滑環與機艙金屬底座連線。機艙電氣裝置總等電位接地端子板與機艙金屬底座之間,用放電間隙等電位聯結器連線。

此方法的優點在於:

採用放電間隙等電位聯結器將外部的直擊雷電流洩流途徑與機組內部的感應雷電流洩流途徑隔離開。

當外部洩放的雷電流強度足夠大時,放電間隙等電位聯結器瞬間近似短路,將裝置、系統之間的電位差箝位在較低的水平,經過等電位聯結器的雷電流大部分也將會沿著pe 線到塔底接地裝置洩放入地,機組電氣、電子系統遭受雷電損害的可能性隨之可以大大降低。

(二)塔筒底部等電位連線

塔底等電位連線系統應採取如圖4 的結構。

塔筒底部應設定塔底總等電位接地端子板,其通過扁鋼或銅芯電纜與設在塔筒水泥基礎外的環形地網可靠連線,扁鋼或銅芯電纜在穿越塔筒水泥基礎時,應與水泥基礎內的鋼筋絕緣。塔筒底部的各種電氣裝置的金屬外殼、機櫃、機架、遮蔽線纜金屬遮蔽層、spd 接地端等均應與總等電位接地端子板進行等電位連線。各電氣裝置和機組控制櫃箱體應以最短的距離通過單獨的接地線與總等電位接地端子板連線。

三、遮蔽、佈線

機艙外殼一般採用玻鋼材料製成,對雷電電磁脈衝沒有遮蔽作用,為改善機艙電磁環境,考慮到施工可行性,建議在製造機艙殼體時在殼體內表面嵌入金屬網,在機艙殼體邊緣鋪設金屬帶與金屬網相連,在**時直接通過螺栓與機艙金屬座連線。

各種線纜應盡量選用帶有遮蔽層的線纜,機艙到塔底的訊號線路應採用光纖,這樣可以減少雷電電磁脈衝對線路的影響。如果沒有遮蔽層或線纜的遮蔽效果不佳,則應考慮將線纜盡量穿金屬管(槽),塔與地面變電站之間的線路還需埋地敷設,遮蔽網(管、槽)應與等電位接地端子板連線。

合理佈線能夠最大限度地減少感應迴路,有效降低系統線間、線地間因電磁感應現象在相互間耦合的過電壓,減小內部浪湧。

四、接地系統

雷電流洩放入地時,接地電阻越小,雷電過電壓越低,雷電流散流越快,被雷擊物體高電位保持時間越短,其跨步電壓、接觸電壓也相應得到降低。

通常情況下,風電機組的接地電阻應≤ 4ω,在土質條件較好的風電場,機組接地電阻值應盡可能小。風電機組應共用一組接地裝置,這樣可以消除各系統間的高電位差,防止各接地系統之間發生高電位反擊。共用接地裝置見圖5所示。

共用接地裝置應充分利用塔基鋼筋,在距風電機組塔基邊緣5m 以上設定一圈垂直接地體並用扁鋼連線,垂直接地體距地面1m 埋設,此圈環形地網與塔基鋼筋至少四處連線,其作用是降低地網電阻、均壓以及為風電機組系統提供pe 線接地。如果接地電阻值還達不到要求,則應向外敷設延伸接地極。

為防止塔身洩流時在pe 線上感應雷電流,pe 線由地網外圍宜穿鋼管埋地接到塔底等電位接地端子板上,從該端子板連線到機艙接地端子板的pe 線採用遮蔽電纜,遮蔽層在塔底處就近與塔基鋼筋連線。

五、風電機組電湧防護

電湧防護是綜合防雷的重要組成部分,如何根據風電機組的實際情況選擇合適的spd,則是確保電湧防護方案安全性、有效性的重要保障。

(一)電源spd 選擇原則

直驅和雙饋系統雖然在電氣配電結構方面有較大差異,但是對於電湧防護來講,雙饋的電湧防護也適用直驅系統,因此我們以雙饋系統的防護方案為例進行詳細介紹。

對於防護轉子spd 的選擇,需要重點了解如下引數:l - l、l - earth 的最大電壓和公差、最大頻率、短路電流。發電機勵磁電路特性和spd 的示例見表1,雙饋風電機組轉子側保護spd 安裝示意圖見圖6。

由於l - pe 之間會反覆出現1.7kv、陡度為1.4kv/μs 的瞬時電壓,如果spd 導通電壓低於該值,就會出現頻繁導通的情況,從而加快了劣化、縮短壽命,因此用於轉子l - pe 保護的spd 導通電壓》1.

7kv, 對於低壓spd,mov 的最高標稱導通電壓為1620v - 1980v,所以單獨採用mov 的spd 已無法滿足防護安全需要,為了達到防護需求,現採用l - pe 之間採用壓敏串聯氣放管的方式,來提高導通電壓,避免上述現象的發生。發電機轉子側的防護產品推薦配置見表2。

發電機定子及變流器電網側的防護相關引數和安裝圖見表3 和圖7。

發電機側定子一般採用it 系統, 電網側一般採用tn - c 或者it 系統,spd 的uc 的選取主要是參照iec61643 - 12 :2008 中6.2.1.1。

it 系統中,l - pe 的uc = ul - l,由於ul -l=690v±10 % , uc 可選擇750v ;在並網側, 參照gb50057 - 2010 中4.3.8 第4 款的規定,每一保護模式的衝擊電流當無法確定時應取≥ 12.

5ka 的t1 類spd,同時根據gb 50343 - 2012《表5.4.3 - 3 電源線路浪湧保護器衝擊電流和標稱放電電流引數推薦值》,也可採用≥ 50ka 的t2 類spd, 因此對於tn - c 系統uc 可選擇為 440v, it系統uc 可選擇 750v。

發電機定子、變流器電網側的防護產品推薦配置見表4。

低壓控制電源系統一般都處於lpz1、lpz2 或者後續防雷區, 根據gb 50343 - 2012 表5.4.3 - 3, lpz1 -lpz2 的配電箱可選擇≥ 10ka 的t2 類spd,lpz2-lpz3的配電箱,可選擇≥ 3ka 或者≥ 6kv/3ka 的t2 或者t3 類spd。

控制電源系統的防護產品推薦配置見表5。

訊號線路spd 應根據線路的工作頻率、傳輸速率、工作電壓、介面形式等引數,選擇插入損耗小、分布電容小、並與縱向平衡、近端串擾指標適配的spd。訊號線路spd 的雷電防護區劃分及配置示意圖見表6(gb 50543 -2012 表5.4.

4)。根據圖8(iec 61400 - 24:2010)中風電機組防雷區的劃分,風向標、風速儀處於lpz0 區,因此採集線路進入plc 的輸入端,應該配置d1 類訊號spd。訊號線路spd產品推薦配置見表7。

變漿櫃控制系統處於lpz1 - lpz2 的邊界,因此選擇c2 類訊號spd。

結語風電機組由於其自身的特點,所以造成的雷擊現象非常嚴重。因此如何做好風電機組的綜合防雷顯得非常重要,雷電防護重點主要體現在直擊雷防護、控制系統防雷以及等電位連線和接地。本文重點介紹了如何針對以上幾個方面進行雷電防護措施。

總之,只有各專業廠家一起相互協作、配合,做好雷擊事故的統計、分析,根據風電機組的實際情況,制定合適的綜合防雷方案,才會大大降低雷擊故障造成的電力損失和停機故障。

風電機組裝置巡檢制度

1 目的 1.1 使風機巡檢人員隨時了解生產裝置的執行狀態,及時發現裝置缺陷,迅速採取有效措施消除或防止缺陷擴大,將事故消滅在萌芽狀態,保證裝置及系統安全執行。1.2 明確風機檢修巡檢人員執行巡視檢查制度的標準和要求。2 適用範圍 本制度適用於商都縣天潤合興公風電場。3 規定和程式 3.1 管理要求...

XE105 2019風電機組現場除錯方案

湖南省永州市江華縣大路鋪風電場 48mw 風力發電機組除錯方案 湘電風能 2013年6月 編寫 湘電風能大路鋪專案部 審核批准 2 1編制目的 4 2編制依據 4 3 除錯質量目標 5 4概述 5 5除錯範圍 6 5.1程式控制系統 6 5.2偏航系統 6 5.3變漿系統 6 5.4冷卻系統 7 6...

全功率變流器風電機組的工作原理及控制策略

隨著現代風電機組的額定功率呈現上公升趨勢,風輪槳葉長度逐漸增加而轉速降低。例如 額定功率為5mw的風電機組槳葉長度超過60公尺,轉子額定轉速為10rpm左右。當發電機為兩對極時,為了使5mw風力發電機通過交流方式直接與額定頻率為50hz的電網相連,機械齒輪箱變速比應為150。齒輪箱變速比的增加,給兆...