三極體工作原理

2021-03-03 23:37:12 字數 3092 閱讀 2979

三極體是電流放大器件,有三個極,分別叫做集電極c,基極b,發射極e。分成npn和pnp兩種。我們僅以npn三極體的共發射極放大電路為例來說明一下三極體放大電路的基本原理。

一、電流放大

下面的分析僅對於npn型矽三極體。如上圖所示,我們把從基極b流至發射極e的電流叫做基極電流ib;把從集電極c流至發射極e的電流叫做集電極電流 ic。這兩個電流的方向都是流出發射極的,所以發射極e上就用了乙個箭頭來表示電流的方向。

三極體的放大作用就是:集電極電流受基極電流的控制(假設電源能夠提供給集電極足夠大的電流的話),並且基極電流很小的變化,會引起集電極電流很大的變化,且變化滿足一定的比例關係:集電極電流的變化量是基極電流變化量的β倍,即電流變化被放大了β倍,所以我們把β叫做三極體的放大倍數(β一般遠大於1,例如幾十,幾百)。

如果我們將乙個變化的小訊號加到基極跟發射極之間,這就會引起基極電流ib的變化,ib的變化被放大後,導致了ic很大的變化。如果集電極電流ic是流過乙個電阻r的,那麼根據電壓計算公式 u=r*i 可以算得,這電阻上電壓就會發生很大的變化。我們將這個電阻上的電壓取出來,就得到了放大後的電壓訊號了。

二、偏置電路

三極體在實際的放大電路中使用時,還需要加合適的偏置電路。這有幾個原因。首先是由於三極體be結的非線性(相當於乙個二極體),基極電流必須在輸入電壓大到一定程度後才能產生(對於矽管,常取0.

7v)。當基極與發射極之間的電壓小於0.7v時,基極電流就可以認為是0。

但實際中要放大的訊號往往遠比 0.7v要小,如果不加偏置的話,這麼小的訊號就不足以引起基極電流的改變(因為小於0.7v時,基極電流都是0)。

如果我們事先在三極體的基極上加上乙個合適的電流(叫做偏置電流,上圖中那個電阻rb就是用來提供這個電流的,所以它被叫做基極偏置電阻),那麼當乙個小訊號跟這個偏置電流疊加在一起時,小訊號就會導致基極電流的變化,而基極電流的變化,就會被放大並在集電極上輸出。另乙個原因就是輸出訊號範圍的要求,如果沒有加偏置,那麼只有對那些增加的訊號放大,而對減小的訊號無效(因為沒有偏置時集電極電流為0,不能再減小了)。而加上偏置,事先讓集電極有一定的電流,當輸入的基極電流變小時,集電極電流就可以減小;當輸入的基極電流增大時,集電極電流就增大。

這樣減小的訊號和增大的訊號都可以被放大了。

三、開關作用

下面說說三極體的飽和情況。像上面那樣的圖,因為受到電阻 rc的限制(rc是固定值,那麼最大電流為u/rc,其中u為電源電壓),集電極電流是不能無限增加下去的。當基極電流的增大,不能使集電極電流繼續增大時,三極體就進入了飽和狀態。

一般判斷三極體是否飽和的準則是:ib*β〉ic。進入飽和狀態之後,三極體的集電極跟發射極之間的電壓將很小,可以理解為乙個開關閉合了。

這樣我們就可以拿三極體來當作開關使用:當基極電流為0時,三極體集電極電流為0(這叫做三極體截止),相當於開關斷開;當基極電流很大,以至於三極體飽和時,相當於開關閉合。如果三極體主要工作在截止和飽和狀態,那麼這樣的三極體我們一般把它叫做開關管。

四、工作狀態

如果我們在上面這個圖中,將電阻rc換成乙個燈泡,那麼當基極電流為0時,集電極電流為0,燈泡滅。如果基極電流比較大時(大於流過燈泡的電流除以三極體的放大倍數 β),三極體就飽和,相當於開關閉合,燈泡就亮了。由於控制電流只需要比燈泡電流的β分之一大一點就行了,所以就可以用乙個小電流來控制乙個大電流的通斷。

如果基極電流從0慢慢增加,那麼燈泡的亮度也會隨著增加(在三極體未飽和之前)。

對於pnp型三極體,分析方法類似,不同的地方就是電流方向跟npn的剛好相反,因此發射極上面那個箭頭方向也反了過來——變成朝里的了。

檢測三極體的口訣

三極體的管型及管腳的判別是電子技術初學者的一項基本功,為了幫助讀者迅速掌握測判方法,筆者總結出四句口訣:「三顛倒,找基極;pn結,定管型;順箭頭,偏轉大;測不准,動嘴巴。」下面讓我們逐句進行解釋吧。

一、 三顛倒,找基極

大家知道,三極體是含有兩個pn結的半導體器件。根據兩個pn結連線方式不同,可以分為npn型和pnp型兩種不同導電型別的三極體,圖1是它們的電路符號和等效電路。

測試三極體要使用萬用電表的歐姆擋,並選擇r×100或r×1k擋位。圖2繪出了萬用電表歐姆擋的等效電路。由圖可見,紅錶筆所連線的是表內電池的負極,黑錶筆則連線著表內電池的正極。

假定我們並不知道被測三極體是npn型還是pnp型,也分不清各管腳是什麼電極。測試的第一步是判斷哪個管腳是基極。這時,我們任取兩個電極(如這兩個電極為1、2),用萬用電表兩支錶筆顛倒測量它的正、反向電阻,觀察表針的偏轉角度;接著,再取1、3兩個電極和2、3兩個電極,分別顛倒測量它們的正、反向電阻,觀察表針的偏轉角度。

在這三次顛倒測量中,必然有兩次測量結果相近:即顛倒測量中表針一次偏轉大,一次偏轉小;剩下一次必然是顛倒測量前後指標偏轉角度都很小,這一次未測的那只管腳就是我們要尋找的基極(參看圖1、圖2不難理解它的道理)。

二、 pn結,定管型

找出三極體的基極後,我們就可以根據基極與另外兩個電極之間pn結的方向來確定管子的導電型別(圖1)。將萬用表的黑錶筆接觸基極,紅錶筆接觸另外兩個電極中的任一電極,若表頭指標偏轉角度很大,則說明被測三極體為npn型管;若表頭指標偏轉角度很小,則被測管即為pnp型。

三、 順箭頭,偏轉大

找出了基極b,另外兩個電極哪個是集電極c,哪個是發射極e呢?這時我們可以用測穿透電流iceo的方法確定集電極c和發射極e。

(1) 對於npn型三極體,穿透電流的測量電路如圖3所示。根據這個原理,用萬用電表的黑、紅錶筆顛倒測量兩極間的正、反向電阻rce和rec,雖然兩次測量中萬用表指標偏轉角度

都很小,但仔細觀察,總會有一次偏轉角度稍大,此時電流的流向一定是:黑錶筆→c極→b極→e極→紅錶筆,電流流向正好與三極體符號中的箭頭方向一致(「順箭頭」),所以此時黑錶筆所接的一定是集電極c,紅錶筆所接的一定是發射極e。

(2) 對於pnp型的三極體,道理也類似於npn型,其電流流向一定是:黑錶筆→e極→b極→c極→紅錶筆,其電流流向也與三極體符號中的箭頭方向一致,所以此時黑錶筆所接的一定是發射極e,紅錶筆所接的一定是集電極c(參看圖1、圖3可知)。

四、 測不出,動嘴巴

若在「順箭頭,偏轉大」的測量過程中,若由於顛倒前後的兩次測量指標偏轉均太小難以區分時,就要「動嘴巴」了。具體方法是:在「順箭頭,偏轉大」的兩次測量中,用兩隻手分別捏住兩錶筆與管腳的結合部,用嘴巴含住(或用舌頭抵住)基電極b,仍用「順箭頭,偏轉大」的判別方法即可區分開集電極c與發射極e。

其中人體起到直流偏置電阻的作用,目的是使效果更加明顯。

三極體工作原理

結構與操作原理 三極體的基本結構是兩個反向鏈結的pn接面,如圖1所示,可有pnp和npn 兩種組合。三個接出來的端點依序稱為射極 emitter,e 基極 base,b 和集 極 collector,c 名稱 和它們在三極體操作時的功能有關。圖中也顯示出 npn與pnp三極體的電路符號,射極特別被標...

三極體工作原理

結構與操作原理 三極體的基本結構是兩個反向鏈結的pn接面,如圖1所示,可有pnp和npn 兩種組合。三個接出來的端點依序稱為射極 emitter,e 基極 base,b 和集 極 collector,c 名稱 和它們在三極體操作時的功能有關。圖中也顯示出 npn與pnp三極體的電路符號,射極特別被標...

三極體工作原理

結構與操作原理 三極體的基本結構是兩個反向鏈結的pn接面,如圖1所示,可有pnp和npn 兩種組合。三個接出來的端點依序稱為射極 emitter,e 基極 base,b 和集 極 collector,c 名稱 和它們在三極體操作時的功能有關。圖中也顯示出 npn與pnp三極體的電路符號,射極特別被標...