畢業設計說明書

2021-07-31 20:51:54 字數 4608 閱讀 7350

第一章概述

1.1流體控制技術綜述

1.1.1 流體簡述

流體是液體和氣體的總稱。流體是由大量的、不斷地作熱運動而且無固定平衡位置的分子構成的,它的基本特徵是沒有一定的形狀和具有流動性。流體都有一定的可壓縮性,液體可壓縮性很小,而氣體的可壓縮性較大,在流體的形狀改變時,流體各層之間也存在一定的運動阻力(即粘滯性)。

當流體的粘滯性和可壓縮性很小時,可近似看作是理想流體,它是人們為研究流體的運動和狀態而引入的乙個理想模型。

固體和流體具有以下不同的特徵:在靜止狀態下固體的作用面上能夠同時承受剪下應力和法向應力。而流體只有在運動狀態下才能夠同時有法向應力和切向應力的作用,靜止狀態下其作用面上僅能夠承受法向應力,這一應力是壓縮應力即靜壓強。

固體在力的作用下發生變形,在彈性極限內變形和作用力之間服從虎克定律,即固體的變形量和作用力的大小成正比。而流體則是角變形速度和剪下應力有關,層流和紊流狀態它們之間的關係有所不同,在層流狀態下,二者之間服從牛頓內摩擦定律。當作用力停止作用,固體可以恢復原來的形狀,流體只能夠停止變形,而不能返回原來的位置。

固體有一定的形狀,流體由於其變形所需的剪下力非常小,所以很容易使自身的形狀適應容器的形狀,在一定的條件下並可以維持下來。

1.1.2流體的劃分

與液體相比氣體更容易變形,因為氣體分子比液體分子稀疏得多。在一定條件下,氣體和液體的分子大小並無明顯差異,但氣體所佔的體積是同質量液體的103倍。所以氣體的分子距與液體相比要大得多,分子間的引力非常微小,分子可以自由運動,極易變形,能夠充滿所能到達的全部空間。

液體的分子距很小,分子間的引力較大,分子間相互制約,分子可以作無一定週期和頻率的振動,在其他分子間移動,但不能像氣體分子那樣自由移動,因此,液體的流動性不如氣體。在一定條件下,一定質量的液體有一定的體積,並取容器的形狀,但不能像氣體那樣充滿所能達到的全部空間。液壓傳動是用液體作為工作介質來傳遞能量和進行控制的傳動方式。

液壓傳動和氣壓傳動稱為流體傳動,是根據17世紀帕斯卡提出的液體靜壓力傳動原理而發展起來的一門新興技術,是工農業生產中廣為應用的一門技術。如今,流體傳動技術水平的高低已成為乙個國家工業發展水平的重要標誌。

2023年英國約瑟夫·布拉曼(joseph braman,1749-1814),在倫敦用水作為工作介質,以水壓機的形式將其應用於工業上,誕生了世界上第一台水壓機。2023年將工作介質水改為油,又進一步得到改善。

第一次世界大戰(1914-1918)後液壓傳動廣泛應用,特別是2023年以後,發展更為迅速。液壓元件大約在19世紀末20世紀初的20年間才開始進入正規的工業生產階段1925 年維克斯(f.vikers)發明了壓力平衡式葉片幫浦,為近代液壓元件工業或液壓傳動的逐步建立奠定了基礎。

20世紀初康斯坦丁·尼斯克(g· constantimsco)對能量波動傳遞所進行的理論及實際研究;2023年對液力傳動(液力聯軸節、液力變矩器等)方面的貢獻,使這兩方面領域得到了發展。

第二次世界大戰(1941-1945)期間,在美國工具機中有30%應用了液壓傳動。應該指出,日本液壓傳動的發展較歐美等國家晚了近20多年。在2023年前後,日本迅速發展液壓傳動,1956 年成立了「液壓工業會」。

近20~30年間,日本液壓傳動發展之快,居世界領先地位。

液壓傳動有許多突出的優點,因此它的應用非常廣泛,如一般工業用的塑料加工機械、壓力機械、工具機等;行走機械中的工程機械、建築機械、農業機械、汽車等;鋼鐵工業用的冶金機械、提公升裝置、軋輥調整裝置等;土木水利工程用的防洪閘門及堤壩裝置、河床公升降裝置、橋梁操縱機構等;發電廠渦輪機調速裝置、核發電廠等等;船舶用的甲板起重機械(絞車)、船頭門、艙壁閥、船尾推進器等;特殊技術用的巨型天線控制裝置、測量浮標、公升降旋轉舞台等;軍事工業用的火炮操縱裝置、船舶減搖裝置、飛行器**、飛機起落架的收放裝置和方向舵控制裝置等。

氣壓傳動以壓縮氣體為工作介質,靠氣體的壓力傳遞動力或資訊的流體傳動。傳遞動力的系統是將壓縮氣體經由管道和控制閥輸送給氣動執行元件,把壓縮氣體的壓力能轉換為機械能而作功;傳遞資訊的系統是利用氣動邏輯元件或射流元件以實現邏輯運算等功能,亦稱氣動控制系統。氣壓傳動的特點是:

工作壓力低,一般為0.3~0.8兆帕,氣體粘度小,管道阻力損失小,便於集中供氣和中距離輸送,使用安全,無**和電擊危險,有過載保護能力;但氣壓傳動速度低,需要氣源。

2023年出現了多級空氣壓縮機,為氣壓傳動的發展創造了條件。2023年風鎬開始用於採礦。2023年美國人g.

威斯汀豪斯發明氣動制動裝置,並在2023年用於鐵路車輛的制動。後來,隨著兵器、機械、化工等工業的發展,氣動機具和控制系統得到廣泛的應用。2023年出現了低壓氣動調節器。

50年代研製成功用於飛彈尾翼控制的高壓氣動伺服機構。60年代發明射流和氣動邏輯元件,遂使氣壓傳動得到很大的發展。

氣壓傳動由氣源、氣動執行元件、氣動控制閥和氣動輔件組成。氣源一般由link title壓縮機提供。氣動執行元件把壓縮氣體的壓力能轉換為機械能,用來驅動工作部件,包括氣缸和氣動馬達。

氣動控制閥用來調節氣流的方向、壓力和流量,相應地分為方向控制閥、壓力控制閥和流量控制閥。氣動輔件包括:淨化空氣用的分水濾氣器,改善空氣潤滑性能的油霧器,消除雜訊的消聲器,管子聯接件等。

在氣壓傳動中還有用來感受和傳遞各種資訊的氣動感測器。

1.1.3流體的發展簡史

流體力學是在人類同自然界作鬥爭和在生產實踐中逐步發展起來的。古時中國有大禹治水疏通江河的傳說;秦朝李冰父子帶領勞動人民修建的都江堰,至今還在發揮著作用;大約與此同時,古羅馬人建成了大規模的供水管道系統等等。

對流體力學學科的形成作出第乙個貢獻的是古希臘的阿基公尺德,他建立了包括物理浮力定律和浮體穩定性在內的液體平衡理論,奠定了流體靜力學的基礎。此後千餘年間,流體力學沒有重大發展。

直到15世紀,義大利達·芬奇的著作才談到水波、管流、水力機械、鳥的飛翔原理等問題;17世紀,帕斯卡闡明了靜止流體中壓力的概念。但流體力學尤其是流體動力學作為一門嚴密的科學,卻是隨著經典力學建立了速度、加速度、力、流場等概念,以及質量、動量、能量三個守恆定律的奠定之後才逐步形成的。

17世紀,力學奠基人牛頓研究了在流體中運動的物體所受到的阻力,得到阻力與流體密度、物體迎流截面積以及運動速度的平方成正比的關係。他針對粘性流體運動時的內摩擦力也提出了牛頓粘性定律。但是,牛頓還沒有建立起流體動力學的理論基礎,他提出的許多力學模型和結論同實際情形還有較大的差別。

法國皮托發明了測量流速的皮託管;達朗貝爾對運河中船隻的阻力進行了許多實驗工作,證實了阻力同物體運動速度之間的平方關係;瑞士的尤拉採用了連續介質的概念,把靜力學中壓力的概念推廣到運動流體中,建立了尤拉方程,正確地用微分方程組描述了無粘流體的運動;伯努利從經典力學的能量守恆出發,研究供水管道中水的流動,精心地安排了實驗並加以分析,得到了流體定常運動下的流速、壓力、管道高程之間的關係——伯努利方程。

尤拉方程和伯努利方程的建立,是流體動力學作為乙個分支學科建立的標誌,從此開始了用微分方程和實驗測量進行流體運動定量研究的階段。從18世紀起,位勢流理論有了很大進展,在水波、潮汐、渦旋運動、聲學等方面都闡明了很多規律。法國拉格朗日對於無旋運動,德國赫爾姆霍茲對於渦旋運動作了不少研究。

在上述的研究中,流體的粘性並不起重要作用,即所考慮的是無粘流體。這種理論當然闡明不了流體中粘性的效應。

19世紀,工程師們為了解決許多任務程問題,尤其是要解決帶有粘性影響的問題。於是他們部分地運用流體力學,部分地採用歸納實驗結果的半經驗公式進行研究,這就形成了水力學,至今它仍與流體力學並行地發展。2023年,納維建立了粘性流體的基本運動方程;2023年,斯托克斯又以更合理的基礎匯出了這個方程,並將其所涉及的巨集觀力學基本概念論證得令人信服。

這組方程就是沿用至今的納維-斯托克斯方程(簡稱n-s方程),它是流體動力學的理論基礎。上面說到的尤拉方程正是n-s方程在粘度為零時的特例。

普朗特學派從2023年到2023年逐步將n-s方程作了簡化,從推理、數學論證和實驗測量等各個角度,建立了邊界層理論,能實際計算簡單情形下,邊界層內流動狀態和流體同固體間的粘性力。同時蒲朗克又提出了許多新概念,並廣泛地應用到飛機和汽輪機的設計中去。這一理論既明確了理想流體的適用範圍,又能計算物體運動時遇到的摩擦阻力。

使上述兩種情況得到了統一。

20世紀初,飛機的出現極大地促進了空氣動力學的發展。航空事業的發展,期望能夠揭示飛行器周圍的壓力分布、飛行器的受力狀況和阻力等問題,這就促進了流體力學在實驗和理論分析方面的發展。20世紀初,以儒科夫斯基、恰普雷金、蒲朗克等為代表的科學家,開創了以無粘不可壓縮流體位勢流理論為基礎的機翼理論,闡明了機翼怎樣會受到舉力,從而空氣能把很重的飛機托上天空。

機翼理論的正確性,使人們重新認識無粘流體的理論,肯定了它指導工程設計的重大意義。

機翼理論和邊界層理論的建立和發展是流體力學的一次重大進展,它使無粘流體理論同粘性流體的邊界層理論很好地結合起來。隨著汽輪機的完善和飛機飛行速度提高到每秒50公尺以上,又迅速擴充套件了從19世紀就開始的,對空氣密度變化效應的實驗和理論研究,為高速飛行提供了理論指導。20世紀40年代以後,由於噴氣推進和火箭技術的應用,飛行器速度超過聲速,進而實現了航天飛行,使氣體高速流動的研究進展迅速,形成了氣體動力學、物理-化學流體動力學等分支學科。

以這些理論為基礎,20世紀40年代,關於炸藥或天然氣等介質中發生的爆轟波又形成了新的理論,為研究原子彈、炸藥等起爆後,激波在空氣或水中的傳播,發展了**波理論。此後,流體力學又發展了許多分支,如高超聲速空氣動力學、超音速空氣動力學、稀薄空氣動力學、電磁流體力學、計算流體力學、兩相(氣液或氣固)流等。

這些巨大進展是和採用各種數學分析方法和建立大型、精密的實驗裝置和儀器等研究手段分不開的。從50年代起,電子計算機不斷完善,使原來用分析方法難以進行研究的課題,可以用數值計算方法來進行,出現了計算流體力學這一新的分支學科。與此同時,由於民用和軍用生產的需要,液體動力學等學科也有很大進展。

畢業設計說明書

引言隨著時代的發展,在我們現代社會生活中,插畫的發展是快節奏的。現在的插畫的概念也不僅僅只侷限於書籍插圖,在諸如電子 商業場館 公眾機構 商品包裝 影視演藝海報 企業廣告甚至t恤 日記本 賀年片這些載體上,我們隨處可見插畫的存在,可以說插畫使我們的藝術生活更加的豐富多彩。我認為插畫設計包含了平面設計...

畢業設計說明書

目錄前言3 摘要3 1緒論6 第一章設計方案的確定 6 1.1 總體設計方案的確定 6 1.2 機械部分的改造設計與計算 7 1.2.1 縱向進給系統的設計選型 7 1.3 橫向進給系統的設計與計算 13 2.1 步進電動機的選擇 17 2.1.1 步進電動機選用原則 17 2.1.2 步進電機的選...

畢業設計說明書

摘要在各類動畫當中,最有魅力並動用最廣的當屬三維動畫。假如你喜歡訪問個人主頁,會很容易看到一些簡單的三維動畫,製作人也許剛剛學會用電腦,就急於顯示自已的動畫才能,畢竟我們的世界是立體的,只有三維才讓我們感到更真實。天空之城三維動畫是描述一座漂浮在空中,遠離喧囂的城市。它有著美麗的風景,清新的空氣。在...