CPU的一些重要效能指標

2022-11-22 21:51:05 字數 5338 閱讀 9509

cpu的英文全稱是central processing unit,我們翻譯成中文也就是**處理器。cpu(微型機系統)從雛形出現到發壯大的今天(下文會有交代),由於製造技術的越來越先進,在其中所整合的電子元件也越來越多,上萬個,甚至是上百萬個微型的電晶體構成了cpu的內部結構。那麼這上百萬個電晶體是如何工作的呢?

看上去似乎很深奧,其實只要歸納起來稍加分析就會一目了然的,cpu的內部結構可分為控制單元,邏輯單元和儲存單元三大部分。而cpu的工作原理就象乙個工廠對產品的加工過程:進入工廠的原料(指令),經過物資分配部門(控制單元)的排程分配,被送往生產線(邏輯運算單元),生產出成品(處理後的資料)後,再儲存在倉庫(儲存器)中,最後等著拿到市場上去賣(交由應用程式使用)。

cpu作為是整個微機系統的核心,它往往是各種檔次微機的代名詞,如往日的286、386、486,到今日的奔騰

三、奔騰四、athlon等等,cpu的效能大致上也就反映出了它所配置的那部微機的效能,因此它的效能指標十分重要。在這裡我們向大家簡單介紹一些cpu主要的效能指標:

第一、主頻,倍頻,外頻。經常聽別人說:「這個cpu的頻率是多少多少。。。。

」其實這個泛指的頻率是指cpu的主頻,主頻也就是cpu的時鐘頻率,英文全稱:cpu clock speed,簡單地說也就是cpu運算時的工作頻率。一般說來,主頻越高,乙個時鐘週期裡面完成的指令數也越多,當然cpu的速度也就越快了。

不過由於各種各樣的cpu它們的內部結構也不盡相同,所以並非所有的時鐘頻率相同的cpu的效能都一樣。至於外頻就是系統匯流排的工作頻率;而倍頻則是指cpu外頻與主頻相差的倍數。三者是有十分密切的關係的:

主頻=外頻x倍頻。 我們通常說的賽揚433、piii 550都是指cpu的主頻而言的。

第二:記憶體匯流排速度,英文全稱是memory-bus speed。cpu處理的資料是從**來的呢?

學過一點計算機基本原理的朋友們都會清楚,是從主儲存器那裡來的,而主儲存器指的就是我們平常所說的記憶體了。一般我們放在外存(磁碟或者各種儲存介質)上面的資料都要通過記憶體,再進入cpu進行處理的。所以與記憶體之間的通道棗記憶體匯流排的速度對整個系統效能就顯得很重要了,由於記憶體和cpu之間的執行速度或多或少會有差異,因此便出現了二級快取,來協調兩者之間的差異,而記憶體匯流排速度就是指cpu與二級(l2)快取記憶體和記憶體之間的通訊速度。

記憶體匯流排速度或者叫系統匯流排速度,一般等同於cpu的外頻。

記憶體匯流排的速度對整個系統效能來說很重要,由於記憶體速度的發展滯後於cpu的發展速度,為了緩解記憶體帶來的瓶頸,所以出現了二級快取,來協調兩者之間的差異,而記憶體匯流排速度就是指cpu與二級(l2)快取記憶體和記憶體之間的工作頻率。

第三、擴充套件匯流排速度,英文全稱是expansion-bus speed。擴充套件匯流排指的就是指安裝在微機系統上的區域性匯流排如vesa或pci匯流排,我們開啟電腦的時候會看見一些插槽般的東西,這些就是擴充套件槽,而擴充套件匯流排就是cpu聯絡這些外部裝置的橋梁。

第四:工作電壓,英文全稱是:supply voltage。

任何電器在工作的時候都需要電,自然也會有額定的電壓,cpu當然也不例外了,工作電壓指的也就是cpu正常工作所需的電壓。早期cpu(286棗486時代)的工作電壓一般為5v,那是因為當時的製造工藝相對落後,以致於cpu的發熱量太大,弄得壽命減短。隨著cpu的製造工藝與主頻的提高,近年來各種cpu的工作電壓有逐步下降的趨勢,以解決發熱過高的問題。

低電壓能解決耗電過大和發熱過高的問題,這對於膝上型電腦尤其重要。

第五:位址匯流排寬度。位址匯流排寬度決定了cpu可以訪問的實體地址空間,簡單地說就是cpu到底能夠使用多大容量的記憶體。

16位的微機我們就不用說了,但是對於386以上的微機系統,位址線的寬度為32位,最多可以直接訪問4096 mb(4gb)的物理空間。而今天能夠用上1gb記憶體的人還沒有多少個呢(伺服器除外)。

第六:資料匯流排寬度。資料匯流排負責整個系統的資料流量的大小,而資料匯流排寬度則決定了cpu與二級快取記憶體、記憶體以及輸入/輸出裝置之間一次資料傳輸的資訊量。

七:協處理器。在486以前的cpu裡面,是沒有內建協處理器的。

由於協處理器主要的功能就是負責浮點運算,因此386、286、8088等等微機cpu的浮點運算效能都相當落後,相信接觸過386的朋友都知道主機板上可以另外加乙個外接協處理器,其目的就是為了增強浮點運算的功能。自從486以後,cpu一般都內建了協處理器,協處理器的功能也不再侷限於增強浮點運算,含有內建協處理器的cpu,可以加快特定型別的數值計算,某些需要進行複雜計算的軟體系統,如高版本的auto cad就需要協處理器支援。

協處理器或者叫數學協處理器。在486以前的cpu裡面,是沒有內建協處理器的。

由於協處理器主要的功能就是負責浮點運算,因此386、286、8088等等微機cpu的浮點運算效能都相當落後,自從486以後,cpu一般都內建了協處理器,協處理器的功能也不再侷限於增強浮點運算。現在cpu的浮點單元(協處理器)往往對多**指令進行了優化。比如intel的mmx技術,mmx是「多**擴充套件指令集」的縮寫。

mmx是intel公司在2023年為增強pentium cpu在音像、圖形和通訊應用方面而採取的新技術。為cpu新增加57條mmx指令,把處理多**的能力提高了60%左右。

第八:超標量。超標量是指在乙個時鐘週期內cpu可以執行一條以上的指令。

這在486或者以前的cpu上是很難想象的,只有pentium級以上cpu才具有這種超標量結構;486以下的cpu屬於低標量結構,即在這類cpu內執行一條指令至少需要乙個或乙個以上的時鐘週期。 流水線技術、超標量。流水線(pipeline)是 intel首次在486晶元中開始使用的。

流水線的工作方式就象工業生產上的裝配流水線。在cpu中由5~6個不同功能的電路單元組成一條指令處理流水線,然後將一條x86指令分成5~6步後再由這些電路單元分別執行,這樣就能實現在乙個cpu時鐘週期完成一條指令,因此提高了cpu的運算速度。超流水線是指某型 cpu內部的流水線超過通常的5~6步以上,例如pentium pro的流水線就長達14步。

將流水線設計的步(級)數越多,其完成一條指令的速度越快,因此才能適應工作主頻更高的cpu。超標量是指在乙個時鐘週期內cpu可以執行一條以上的指令。這在486或者以前的cpu上是很難想象的,只有pentium級以上cpu才具有這種超標量結構;這是因為現代的cpu越來越多的採用了risc技術,所以才會超標量的cpu。

在解釋超流水線與超標量前,先了解流水線(pipeline)。流水線是intel首次在486晶元中開始使用的。流水線的工作方式就象工業生產上的裝配流水線。

在cpu中由5—6個不同功能的電路單元組成一條指令處理流水線,然後將一條x86指令分成5—6步後再由這些電路單元分別執行,這樣就能實現在乙個cpu時鐘週期完成一條指令,因此提高cpu的運算速度。經典奔騰每條整數流水線都分為四級流水,即指令預取、解碼、執行、寫回結果,浮點流水又分為八級流水。

超標量是通過內建多條流水線來同時執行多個處理器,其實質是以空間換取時間。而超流水線是通過細化流水、提高主頻,使得在乙個機器週期內完成乙個甚至多個操作,其實質是以時間換取空間。例如pentium 4的流水線就長達20級。

將流水線設計的步(級)越長,其完成一條指令的速度越快,因此才能適應工作主頻更高的cpu。但是流水線過長也帶來了一定***,很可能會出現主頻較高的cpu實際運算速度較低的現象,intel的奔騰4就出現了這種情況,雖然它的主頻可以高達1.4g以上,但其運算效能卻遠遠比不上amd 1.

2g的速龍甚至奔騰iii。

第九:l1快取記憶體,也就是我們經常說的一級快取記憶體。在cpu裡面內建了快取記憶體可以提高cpu的執行效率,這也正是486dlc比386dx-40快的原因。

內建的l1快取記憶體的容量和結構對cpu的效能影響較大,容量越大,效能也相對會提高不少,所以這也正是一些公司力爭加大l1級高速緩衝儲存器容量的原因。不過高速緩衝儲存器均由靜態ram組成,結構較複雜,在cpu管芯面積不能太大的情況下,l1級快取記憶體的容量不可能做得太大。

第十:採用回寫(write back)結構的快取記憶體。它對讀和寫操作均有效,速度較快。而採用寫通(write-through)結構的快取記憶體,僅對讀操作有效.

第十一:動態處理。動態處理是應用在高能奔騰處理器中的新技術,創造性地把三項專為提高處理器對資料的操作效率而設計的技術融合在一起。

這三項技術是多路分流**、資料流量分析和猜測執行。動態處理並不是簡單執行一串指令,而是通過運算元據來提高處理器的工作效率。

動態處理包括了棗1、多路分流**:通過幾個分支對程式流向進行**,採用多路分流**演算法後,處理器便可參與指令流向的跳轉。它**下一條指令在記憶體中位置的精確度可以達到驚人的90%以上。

這是因為處理器在取指令時,還會在程式中尋找未來要執行的指令。這個技術可加速向處理器傳送任務。2、資料流量分析:

拋開原程式的順序,分析並重排指令,優化執行順序:處理器讀取經過解碼的軟體指令,判斷該指令能否處理或是否需與其它指令一道處理。然後,處理器再決定如何優化執行順序以便高效地處理和執行指令。

3、猜測執行:通過提前判讀並執行有可能需要的程式指令的方式提高執行速度:當處理器執行指令時(每次五條),採用的是「猜測執行」的方法。

這樣可使奔騰ii處理器超級處理能力得到充分的發揮,從而提公升軟體效能。被處理的軟體指令是建立在猜測分支基礎之上,因此結果也就作為「**結果」保留起來。一旦其最終狀態能被確定,指令便可返回到其正常順序並保持永久的機器狀態。

製造工藝。 pentium cpu的製造工藝是0.35微公尺, pii和賽揚可以達到0.

25微公尺,最新的cpu製造工藝可以達到0.18微公尺,並且將採用銅配線技術,可以極大地提高cpu的整合度和工作頻率

製造工藝的微公尺是指ic內電路與電路之間的距離。製造工藝的趨勢是向密集度愈高的方向發展。密度愈高的ic電路設計,意味著在同樣大小面積的ic中,可以擁有密度更高、功能更複雜的電路設計。

現在主要的180nm、130nm、90nm。最近官方已經表示有65nm的製造工藝了。

12.封裝形式 cpu封裝是採用特定的材料將cpu晶元或cpu模組固化在其中以防損壞的保護措施,一般必須在封裝後cpu才能交付使用者使用。cpu的封裝方式取決於cpu安裝形式和器件整合設計,從大的分類來看通常採用socket插座進行安裝的cpu使用pga(柵格陣列)方式封裝,而採用slot x槽安裝的cpu則全部採用sec(單邊接插盒)的形式封裝。

現在還有plga(plastic land grid array)、olga(organic land grid array)等封裝技術。由於市場競爭日益激烈,目前cpu封裝技術的發展方向以節約成本為主。

cpu的位和字長位:在數位電路和電腦技術中採用二進位制,**只有「0」和「1」,其中無論是 「0」或是「1」在cpu中都是一「位」。   字長:

電腦技術中對cpu在單位時間內(同一時間)能一次處理的二進位制數的位數叫字長。所以能處理字長為8位資料的cpu通常就叫8位的cpu。同理32位的cpu就能在單位時間內處理字長為32位的二進位制資料。

位元組和字長的區別:由於常用的英文本元用8位二進位制就可以表示,所以通常就將8位稱為乙個位元組。字長的長度是不固定的,對於不同的cpu、字長的長度也不一樣。

8位的cpu一次只能處理乙個位元組,而32位的cpu一次就能處理4個位元組,同理字長為64位的cpu一次可以處理8個位元組。

電腦cpu的效能指標基礎知識介紹

2010年02月20日 17時20分26秒組裝電腦配置網 cpu主要的效能指標有以下幾點 1 主頻,也就是cpu的時鐘頻率,簡單地說也就是cpu的工作頻率。一般說來,乙個時鐘週期完成的指令數是固定的,所以主頻越高,cpu的速度也就越快了。不過由於各種cpu的內部結構也不盡相同,所以並不能完全用主頻來...

戶外AA制的一些重要原則

講給隊員的話 1 戶外一原則 永遠依靠自己!aa戶外許多人理解成費用aa,這是當前aa戶外最大的誤區,其實不僅僅是費用aa,責任和風險同樣aa,因此戶外出行時,不是只有隊員面臨危險 南寧和北京靈山事件 領隊也同樣面臨戶外的危險 這次太白和新疆事件 看過垂直極限和冰峰168小時的都知道,當有人處於絕境...

提高CS系統效能的一些方法

二 乙個例子 下面,我們來考慮這樣乙個例子 乙個資料庫應用程式完成顯示每個銷售訂單的所有行的金額合計。一般演算法分兩步 1 每行專案中數量乘以單價 金額 2 把每行金額累加。第一種方法 每次一行,然後,用應用程式累加,即 select orderid,quantity unitprice from ...