23感測器知識

2021-03-04 00:25:03 字數 4388 閱讀 7139

感測器工作原理的分類物理感測器應用的是物理效應,諸如壓電效應,磁致伸縮現象,離化、極化、熱電、光電、磁電等效應。被測訊號量的微小變化都將轉換成電訊號。化學感測器包括那些以化學吸附、電化學反應等現象為因果關係的感測器,被測訊號量的微小變化也將轉換成電訊號。

向感測器提供±15v電源,激磁電路中的晶體振盪器產生400hz的方波,經過tda2030功率放大器即產生交流激磁功率電源,通過能源環形變壓器t1從靜止的初級線圈傳遞至旋轉的次級線圈,得到的交流電源通過軸上的整流濾波電路得到±5v的直流電源,該電源做運算放大器ad822的工作電源;由基準電源ad589與雙運放ad822組成的高精度穩壓電源產生±4.5v的精密直流電源,該電源既作為電橋電源,又作為放大器及v/f轉換器的工作電源。當彈性軸受扭時,應變橋檢測得到的mv級的應變訊號通過儀表放大器ad620放大成1.

5v±1v的強訊號,再通過v/f轉換器lm131變換成頻率訊號,通過訊號環形變壓器t2從旋轉的初級線圈傳遞至靜止次級線圈,再經過外殼上的訊號處理電路濾波、整形即可得到與彈性軸承受的扭矩成正比的頻率訊號,該訊號為ttl電平,既可提供給專用二次儀表或頻率計顯示也可直接送計算機處理。由於該旋轉變壓器動--靜環之間只有零點幾公釐的間隙,加之感測器軸上部分都密封在金屬外殼之內,形成有效的遮蔽,因此具有很強的抗干擾能力。有些感測器既不能劃分到物理類,也不能劃分為化學類。

大多數感測器是以物理原理為基礎運作的。化學感測器技術問題較多,例如可靠性問題,規模生產的可能性,**問題等,解決了這類難題,化學感測器的應用將會有巨大增長。

常見的:

1.自動門,利用人體的紅外微波來開關門

2.煙霧報警器,利用煙敏電阻來測量煙霧濃度,從而達到報警目的

3.手機,數位相機的照相機,利用光學感測器來捕獲圖象

4.電子稱,利用力學感測器(導體應變片技術)來測量物體對應變片的壓力,從而達到測量重量目的

5.水位報警,溫度報警,濕度報警,光學報警等都是……

智慧型感測器已廣泛應用於航天、航空、國防、科技和工農業生產等各個領域中。例如,它在機械人領域中有著廣闊應用前景,智慧型感測器使機械人具有類人的五官和大腦功能,可感知各種現象,完成各種動作。在工業生產中,利用傳統的感測器無法對某些產品質量指標(例如,黏度、硬度、表面光潔度、成分、顏色及味道等)進行快速直接測量並**控制。

而利用智慧型感測器可直接測量與產品質量指標有函式關係的生產過程中的某些量(如溫度、壓力、流量等)。cygnus公司生產了一種"葡萄糖手錶",其外觀像普通手錶一樣,戴上它就能實現無疼、無血、連續的血糖測試。"葡萄糖手錶"上有一塊塗著試劑的墊子,當墊子與**接觸時,葡萄糖分子就被吸附到墊子上,並與試劑發生電化學反應,產生電流。

感測器測量該電流,經處理器計算出與該電流對應的血糖濃度,並以數字量顯示。

常將感測器的功能與人類5大感覺器官相比擬:

光敏感測器——視覺? 聲敏感測器——聽覺

氣敏感測器——嗅覺 ?化學感測器——味覺

壓敏、溫敏、流體感測器——觸覺

敏感元件的分類:

①物理類,基於力、熱、光、電、磁和聲等物理效應。

②化學類,基於化學反應的原理。

③生物類,基於酶、抗體、和激素等分子識別功能。

通常據其基本感知功能可分為熱敏元件、光敏元件、氣敏元件、力敏元件、磁敏元件、溼敏元件、聲敏元件、放射線敏感元件、色敏元件和味敏元件等十大類(還有人曾將敏感元件分46類)。

可以用不同的觀點對感測器進行分類:它們的轉換原理(感測器工作的基本物理或化學效應);它們的用途;它們的輸出訊號型別以及製作它們的材料和工藝等。

根據感測器工作原理,可分為物理感測器和化學感測器二大類 :

感測器工作原理的分類物理感測器應用的是物理效應,諸如壓電效應,磁致伸縮現象,離化、極化、熱電、光電、磁電等效應。被測訊號量的微小變化都將轉換成電訊號。

化學感測器包括那些以化學吸附、電化學反應等現象為因果關係的感測器,被測訊號量的微小變化也將轉換成電訊號。

有些感測器既不能劃分到物理類,也不能劃分為化學類。大多數感測器是以物理原理為基礎運作的。化學感測器技術問題較多,例如可靠性問題,規模生產的可能性,**問題等,解決了這類難題,化學感測器的應用將會有巨大增長。

常見感測器的應用領域和工作原理列於下表。

壓力敏和力敏感測器位置感測器

液面感測器能耗感測器

速度感測器加速度感測器

射線輻射感測器熱敏感測器

24ghz雷達感測器

振動感測器溼敏感測器

磁敏感測器氣敏感測器

真空度感測器生物感測器等。

模擬感測器——將被測量的非電學量轉換成模擬電訊號。

數字感測器——將被測量的非電學量轉換成數字輸出訊號(包括直接和間接轉換)。

膺數字感測器——將被測量的訊號量轉換成頻率訊號或短週期訊號的輸出(包括直接或間接轉換)。

開關感測器——當乙個被測量的訊號達到某個特定的閾值時,感測器相應地輸出乙個設定的低電平或高電平訊號。

在外界因素的作用下,所有材料都會作出相應的、具有特徵性的反應。它們中的那些對外界作用最敏感的材料,即那些具有功能特性的材料,被用來製作感測器的敏感元件。從所應用的材料觀點出發可將感測器分成下列幾類:

(1)按照其所用材料的類別分

金屬聚合物陶瓷混合物

(2)按材料的物理性質分: 導體絕緣體半導體磁性材料

(3)按材料的晶體結構分:

單晶多晶非晶材料

與採用新材料緊密相關的感測器開發工作,可以歸納為下述三個方向:

(1)在已知的材料中探索新的現象、效應和反應,然後使它們能在感測器技術中得到實際使用。

(2)探索新的材料,應用那些已知的現象、效應和反應來改進感測器技術。

(3)在研究新型材料的基礎上探索新現象、新效應和反應,並在感測器技術中加以具體實施。

現代感測器製造業的進展取決於用於感測器技術的新材料和敏感元件的開發強度。感測器開發的基本趨勢是和半導體以及介質材料的應用密切關聯的。表1.

2中給出了一些可用於感測器技術的、能夠轉換能量形式的材料。

整合感測器薄膜感測器厚膜感測器陶瓷感測器

整合感測器是用標準的生產矽基半導體積體電路的工藝技術製造的。通常還將用於初步處理被測訊號的部分電路也整合在同一晶元上。

薄膜感測器則是通過沉積在介質襯底(基板)上的,相應敏感材料的薄膜形成的。使用混合工藝時,同樣可將部分電路製造在此基板上。

厚膜感測器是利用相應材料的漿料,塗覆在陶瓷基片上製成的,基片通常是al2o3製成的,然後進行熱處理,使厚膜成形。

陶瓷感測器採用標準的陶瓷工藝或其某種變種工藝(溶膠-凝膠等)生產。

完成適當的預備性操作之後,已成形的元件在高溫中進行燒結。厚膜和陶瓷感測器這二種工藝之間有許多共同特性,在某些方面,可以認為厚膜工藝是陶瓷工藝的一種變型。

每種工藝技術都有自己的優點和不足。由於研究、開發和生產所需的資本投入較低,以及感測器引數的高穩定性等原因,採用陶瓷和厚膜感測器比較合理。

感測器的靜態特性是指對靜態的輸入訊號,感測器的輸出量與輸入量之間所具有相互關係。因為這時輸入量和輸出量都和時間無關,所以它們之間的關係,即感測器的靜態特性可用乙個不含時間變數的代數方程,或以輸入量作橫座標,把與其對應的輸出量作縱座標而畫出的特性曲線來描述。表徵感測器靜態特性的主要引數有:

線性度、靈敏度、遲滯、重複性、漂移等。

(1)線性度:指感測器輸出量與輸入量之間的實際關係曲線偏離擬合直線的程度。定義為在全量程範圍內實際特性曲線與擬合直線之間的最大偏差值與滿量程輸出值之比。

(2)靈敏度:靈敏度是感測器靜態特性的乙個重要指標。其定義為輸出量的增量與引起該增量的相應輸入量增量之比。用s表示靈敏度。

(3)遲滯:感測器在輸入量由小到大(正行程)及輸入量由大到小(反行程)變化期間其輸入輸出特性曲線不重合的現象成為遲滯。對於同一大小的輸入訊號,感測器的正反行程輸出訊號大小不相等,這個差值稱為遲滯差值。

(4)重複性:重複性是指感測器在輸入量按同一方向作全量程連續多次變化時,所得特性曲線不一致的程度。

(5)漂移:感測器的漂移是指在輸入量不變的情況下,感測器輸出量隨著時間變化,此現象稱為漂移。產生漂移的原因有兩個方面:一是感測器自身結構引數;二是周圍環境(如溫度、濕度等)。

所謂動態特性,是指感測器在輸入變化時,它的輸出的特性。在實際工作中,感測器的動態特性常用它對某些標準輸入訊號的響應來表示。這是因為感測器對標準輸入訊號的響應容易用實驗方法求得,並且它對標準輸入訊號的響應與它對任意輸入訊號的響應之間存在一定的關係,往往知道了前者就能推定後者。

最常用的標準輸入訊號有階躍訊號和正弦訊號兩種,所以感測器的動態特性也常用階躍響應和頻率響應來表示。

通常情況下,感測器的實際靜態特性輸出是條曲線而非直線。在實際工作中,為使儀表具有均勻刻度的讀數,常用一條擬合直線近似地代表實際的特性曲線、線性度(非線性誤差)就是這個近似程度的乙個效能指標。

擬合直線的選取有多種方法。如將零輸入和滿量程輸出點相連的理論直線作為擬合直線;或將與特性曲線上各點偏差的平方和為最小的理論直線作為擬合直線,此擬合直線稱為最小二乘法擬合直線。

靈敏度是指感測器在穩態工作情況下輸出量變化△y對輸入量變化△x的比值。

它是輸出一輸入特性曲線的斜率。如果感測器的輸出和輸入之間顯線性關係,則靈敏度s是乙個常數。否則,它將隨輸入量的變化而變化。

感測器知識

稱重感測器實際上是一種將質量訊號轉變為可測量的電訊號輸出的裝置。用感測器茵先要考慮感測器所處的實際工作環境,這點對正確選用稱重感測器至關重要,它關係到感測器能否正常工作以及它的安全和使用壽命,乃至整個衡器的可靠性和安全性。在稱重感測器主要技術指標的基本概念和評價方法上,新舊國標有質的差異 傳統概念上...

感測器基本知識

一 溫度測量的基本概念 溫度是表徵物體冷熱程度的物理量。溫度只能通過物體隨溫度變化的某些特性來間接測量,而用來量度物體溫度數值的標尺叫溫標。它規定了溫度的讀數起點 零點 和測量溫度的基本單位。目前國際上用得較多的溫標有華氏溫標 攝氏溫標 熱力學溫標和國際實用溫標。攝氏溫標 規定 在標準大氣壓下,冰的...

感測器知識點

感測器與自動檢測技術 第一章1 檢測的定義 檢測是利用各種物理 化學反應 選擇合適的方法與裝置,將生產 科研 生活等各方面的有關資訊通過檢查與測量的方法賦予定性或者定量結果的過程。能夠自動的完成整個檢測處理過程的技術成為自動檢測與轉換技術。2檢測系統的一般構成框圖 1 感測器是檢測系統的第一環節,設...